Schools
Permanent URI for this community
Browse
Browsing Schools by Author "ACIR, Adem"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Commercial utilization of weapon grade plutonium as TRISO fuel in conventional CANDU reactors(Energy Conversion and Management, 2012-06-15) ŞAHİN, Sümer; ŞAHİN, Hacı Mehmet; ACIR, AdemLarge quantities of weapon grade (WG) plutonium have been accumulated in the nuclear warheads. Plutonium and heavy water moderator can give a good combination with respect to neutron economy. TRISO type fuel can withstand very high fuel burn up levels. The paper investigates the prospects of uti lization of TRISO fuel made of WG-plutonium in CANDU reactors. Three different fuel compositions have been investigated: (1): 90% ThC + 10% PuC, (2): 70% ThC + 30% PuC and (3): 50% ThC + 50% PuC. The temporal variation of the criticality k1 and the burn-up values of the reactor have been calculated by full power operation up to 17 years. Calculated startup criticalities for these fuel modes are k1,0 = 1.6403, 1.7228 and 1.7662, respectively. Attainable burn up values and reactor operation times without new fuel charge will be 94 700, 265 000 and 425 000 MW.D/MT and along with continuous operation periods of 3.5, 10 and 17 years, respec tively, for the corresponding modes. These high burn ups would reduce fuel fabrication costs and nuclear waste mass for final disposal per unit energy drastically.Item LIFE hybrid reactor as reactor grade plutonium burner(Energy Conversion and Management, 2012-05-08) ŞAHİN, Sümer; ŞAHİN, Hacı Mehmet; ACIR, AdemThe early version of the conceptual modified design of the Laser Inertial Confinement Fusion Fission Energy (LIFE) engine consists of a spherical fusion chamber of 5 m diameter, surrounded by a multi-lay ered blanket. The first wall is made of 2 cm thick ODS and followed by a Li17Pb83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the FLIBE molten salt zone (50 cm), containing fissionable fuel. A 3rd ODS layer (2 cm) separates the mol ten salt zone on the right side from the graphite reflector (30 cm). Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approxima tion using 238-neutron groups. Reactor grade (RG) plutonium carbide fuel in form of TRISO particles with volume fractions of 2%, 3%, 4%, 5% and 6% have been dispersed homogenously in the FLIBE coolant. Tritium breeding ratio (TBR) values per incident fusion neutron for the above cited cases start with TBR = 1.35, 1.52, 1.73, 2.02 and 2.47, respectively. With the depletion of fissionable RG-Pu isotopes, TBR decreases gradually. At startup, higher fissionable fuel content in the molten salt leads to higher blanket energy multiplication, namely M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 with 2%, 3%, 4%, 5% and 6% TRISO volume fraction, respectively. Calculations have led to very high burn up values (>400,000 MD.D/MT). TRISO particles can withstand such high burn ups. Such high burn ups would lead to drastic reduction of final nuclear waste per unit energy production.Item Utilization of Reactor Grade Plutonium as Energy Multiplier in the LIFE Engine(Fusion Science and Technology, 2017-08-10) ŞAHİN, Sümer; ŞAHİN, Hacı Mehmet; ACIR, AdemThe accumulated reactor grade (RG)-plutonium as nuclear waste of conventional reactors is estimated to exceed 1700 tonnes. Laser Inertial Confinement Fusion Fission Energy (LIFE) engine is considered to incinerate RG-plutonium in stockpiles. Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approximation using 238-neutron groups. RG plutonium out of the nuclear waste of LWRs is used in form of fissile carbide fuel in TRISO particles with volume fractions of 2, 3, 4, 5 and 6 %, homogenously dispersed in the Flibe coolant. Respective tritium breeding ratio (TBR) values per incident fusion neutron are calculated as TBR = 1.35, 1.52, 1.73, 2.02 and 2.47 at start-up. With the burn up of fissionable RG-Pu isotopes in the coolant, TBR decreases gradually. Similarly, blanket energy multiplications are calculated as M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 at start-up, respectively. Calculations have indicated prospects of achievability of very high burn up values (> 400 000 MD.D/MT).